ISHS
  Fruits
     
Fruits
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

Fruits
  Fruits 1-9 | DOI: 10.17660/th2023/016
ISSN 0248-1294 print and 1625-967X online | © ISHS 2023 | Fruits, The International Journal of Tropical and Subtropical Horticulture | Original article

Identification and quantification of glucosinolates with HPTLC-ESI MS/MS in Moringa oleifera Lam. in the rainy and dry seasons

T. Rodríguez-García1, J.F. Pérez-Barcena2, N. Nava-Gutiérrez3, B.H. Camacho-Díaz4, K.M. Granados-Vega4 and S. Evangelista-Lozano4,a
1 CONAHCYT – Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos (CEPROBI-IPN), Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi No. 8, Col. San Isidro, C.P. 62731, Yautepec, Morelos, Mexico
2 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias de la Salud (CICS-UMA-IPN), Licenciatura en Nutrición, CICITEC, Ex – Hacienda del Mayorazgo, Km. 39.5 Carretera Xochimilco – Oaxtepec, C.P. 12000, A.P. 87-005, Ciudad de México, México
3 Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas s/n, Ciudad Universitaria Sur, 39086 Chilpancingo de los Bravo, Gro., Mexico
4 Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos (CEPROBI-IPN), Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi No. 8, Col. San Isidro, C.P. 62731, Yautepec, Morelos, Mexico

SUMMARY
IntroductionMoringa oleifera Lam. is an economically important plant owing to its content of bioactive substances such as glucosinolates, which are indolic aromatic phytocompounds with a hypoglucemic pharmacological effect. It is important to know which plant organ contains the greatest amount of glucosinolates, and in what part of the year. Objective – To identify and quantify glucosinolates in extracts from M. oleifera plant organs cultivated in Morelos, Mexico. Materials and methods – Phytochemical analysis was carried out using high-performance thin-layer chromatography (HPTLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of M. oleifera plant organ extracts obtained from maceration in different solvents (water, ethanol, and methanol), collected in the rainy and dry seasons. Results and discussion – The glucosinolate content was greatest in the methanol extract. The optimum mobile phase for the separation of compounds was n-butanol, n-propanol, acetic acid, and water (3:1:1:1). A greater yield was obtained in the dry season in extracts from tender leaves (137 mg mL-1) than from mature leaves or flowers; in the rainy season, the greatest yield was in the extract from the flowers (97 mg mL-1). The accumulation of glucosinolates depends on various factors, such as the time of year. However, additional research is necessary to understand the mechanisms involved. Conclusion – There was greater production of glucosinolates in M. oleifera plants in tender leaves during the dry season and in flowers during the rainy season. Analysis with HPTLC-ESI-MS/MS identified the hypoglucemic glucosinolates acetyl-4-α-rhamnopyranosyloxy-benzyl glucosinolate and 4-α-rhamnopyranosyloxy-benzyl glucosinolate.

Keywords chromatography, glycosides, sinigrin, vegetable extracts

Significance of this study

What is already known on this subject?

  • Moringa oleifera seeds have hypoglycemic compounds, and have the quality of having abundant flowering, and leaves observed in the field; however, in the present work it was determined at what time of year and in which organ of Moringa it had the greatest amount of hypoglycemic.
What are the new findings?
  • The presence of glucosinolates in different organs can guide us in choosing the season for harvest, as well as the organs with the highest glucosinolate content.
What is the expected impact on horticulture?
  • There was greater production of glucosinolates in M. oleifera plants in tender leaves during the dry season and in flowers during the rainy season.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: sevangel@ipn.mx  

References

  • Andersen, T.G., Nour-Eldin, H.H., Fuller, V.L., Olsen, C.E., Burow, M., and Halkier, B.A. (2013). Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. The Plant Cell 25(8), 3133–3145. https://doi.org/10.1105/tpc.113.110890.

  • Bennett, R.N., Mellon, F.A., Foidl, N., Pratt, J.H., Dupont, S., Perkins, L., and Kroon, P.A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 51, 3546–3553. https://doi.org/10.1021/jf0211480.

  • Bennett, R.N., Mellon, F.A., and Kroon, P.A. (2004). Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J. Agric. Food Chem. 52(3), 428–438. https://doi.org/10.1021/jf030530p.

  • Cáceres, A., Cabrera, O., Morales, O., Mollinedo, P., and Mendia, P. (1991). Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. J. Ethnopharmacology 33, 213–216. https://doi.org/10.1016/0378-8741(91)90078-R.

  • Cartea, M.E., Francisco, M., Abilleira, R., and Velasco, P. (2008). Los glucosinolatos como factor de calidad en las brásicas: Distribución y alimentación. Horticultura, p. 54–55.

  • Cartea, M.E., Francisco, M., Abilleira, R., and Velasco, P. (2011). Los glucosinolatos como factor de calidad en las brásicas; degradación desde el campo hasta la mesa. Tecnología de la Postcosecha, p. 20–61. ISSN: 1134-4881.

  • Chen, S., and Andreasson, E. (2001). Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39, 743–758. https://doi.org/10.1016/S0981-9428(01)01301-8.

  • Clossais-Besnard, N., and Larher, F. (1991). Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J. Sci. Food Agric. 56, 25–38. https://doi.org/10.1002/jsfa.2740560104.

  • Dini, I., Tenore, G.C., and Dini, A. (2002). Glucosinolates from Maca (Lepidium meyenii). Biochem. Syst. and Ecol. 30, 1087–1090. https://doi.org/10.1016/S0305-1978(02)00058-3.

  • Ediage, E.N., Di Mavungu, J.D., Scippo, M.L., Schneider, Y.J., Larondelle, Y., Callebaut, A., Robbens, J., Van Peteghem, C., and De Saeger, S. (2011). Screening, identification and quantification of glucosinolates in black radish (Raphanus sativus L. niger) based dietary supplements using liquid chromatography coupled with a photodiode array and liquid chromatography-mass spectrometry. J. Chromatogr. A 1218(28), 4395–4405. https://doi.org/10.1016/j.chroma.2011.05.012.

  • Ezeamuzie, I.C., Ambakederemo, A.W., Shode, F.O., and Ekwebelem, S.C. (1996). Anti-inflammatory effects of M. oleifera root extract. Intl. J. Pharmacognosy 34, 207–212. https://doi.org/10.1076/phbi.34.3.207.13211.

  • Fahey, J. (2005). Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. J. Trees for Life 1, 5. http://www.tfljournal.org/article.php/20051201124931586.

  • Förster, N., Ulrichs, C., Schreiner, M., Müller, C.T., and Mewis, I. (2015). Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem. 166, 456–464. https://doi.org/10.1016/j.foodchem.2014.06.043.

  • Gols, R., Van Dam, N.M., Reichelt, M., Gershenzon, J., Raaijmakers, C.E., Bullock, J.M., and Harvey, J.A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology 28(3), 77–89. https://doi.org/10.1007/s00049-018-0258-4.

  • Guevara, A.P., Vargas, C., and Uy, M. (1996). Anti-inflammatory and antitumor activities of seed extracts of malunggay, M. oleifera L. (Moringaceae). Philippine J. Sci. 125, 175.

  • Iqbal, S., and Bhanger, M.I. (2006). Efecto de la estación y el lugar de producción sobre la actividad antioxidante de las hojas de Moringa oleifera cultivadas en Pakistán. J. Composturas Alimentarias. Anal. 19, 544–551.

  • Jaiswal, D., Rai, P.K., Kumar, A., Mehta, S., and Watal, G. (2009). Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacology 123, 392–396. https://doi.org/10.1016/j.jep.2009.03.036.

  • Jia,, X., Yu, P., An, Q., Ren, J., Fan, G., Wie, Z., Li, X., and Pan, S. (2023). Identification of glucosinolates and volatile odor compounds in microwaved radish (Raphanus sativus L.) seeds and the corresponding oils by UPLC-IMS-QTOF-MS and GC × GC-qMS analysis. Food Res. Intl. 169, 112873. https://doi.org/10.1016/j.foodres.2023.112873.

  • Maldini, M., Maksoud, S.A., Natella, F., Montoro, P., Petretto, G.L., Foddai, M., De Nicola, G.R., Chessa, M., and Pintore, G. (2014). Moringa oleifera: Study of phenolics and glucosinolates by mass spectrometry. J. Mass Spectrom. 49, 900–910. https://doi.org/10.1002/jms.3437.

  • Malliga, N., Dhanarajan, M., and Elangovan, I. (2015). Preliminary phytochemical screening and HPTLC fingerprinting profile of leaf extracts of Moringa oleifera and Phyllanthus emblica. Intl. Res. J. Pharmaceutical and Biosci. 2, 32–40. ISSN: 2394-5834.

  • Manohar, V.S., Jayasree, K.T., Kishore, L.K., Rupa, M., Dixit, R., and Chandrasekhar, N. (2012). Evaluation of hypoglucemic and antihyperglycemic effect of freshly prepared aqueous extract of Moringa oleifera leaves in normal and diabetic rabbits. J. Chem. Pharmaceutical Res. 4, 249–253. ISSN: 0975-7384.

  • Matsuo, M. (1970). New thin-layer chromatographic solvent systems for glucosinolates (mustard oil glucosides). J. Chromatography A. 49, 323–324. https://doi.org/10.1016/s0021-9673(00)93642-2.

  • Murakami, A., Kitazono, Y., Jiwajinda, S., Koshimizu, K., and Ohigashi, H. (1998). Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Medica 64(4), 319–323. https://doi.org/10.1055/s-2006-957442.

  • Ndiaye, M. (2002). Contribution a l'etude de l'activite anti-inflammatoire de Moringa oleifera (Moringaceae). Dakar Med. 47, 210.

  • Olson, E.M., and Alvarado, O.L. (2016). ¿Dónde cultivar el árbol milagro, Moringa oleifera, ¿en México? Un análisis de su distribución potencial. Rev. Mexicana de Biodiversidad 87, 1089–1102. https://doi.org/10.1016/j.rmb.2016.07.007.

  • Olson, M.E., and Fahey, J.W. (2011). Moringa oleifera: un árbol multiusos para las zonas tropicales secas. Rev. Mexicana de Biodiversidad 82(4), 1071–1082. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S187034532011000400001&lng=es&tlng=es..

  • Padilla, G., Cartea, M.E., Velasco, P., De Haro, A., and Ordás, A. (2007). Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68, 536–545. https://doi.org/10.1016/j.phytochem.2006.11.017.

  • Ramallo, R., Wathelet, J.P., Le Boulengé, E., Torres, E., Marlier, M., Ledent, J.F., and Larondelle, Y. (2004). Glucosinolates in isano (Tropaeolum tuberosum) tubers: Qualitative and quantitative content and changes after maturity. J. Sci. Food Agric. 84(7), 701–706. https://doi.org/10.1002/jsfa.1691.

  • Rincón, P.A. (2014). Biosíntesis de los glucosinolatos e importancia nutricional humana y funciones de protección a las plantas. Rev. Alimentos Hoy 22, 64–80.

  • Rochfort, S.J., Trenerry, V.C., Imsic, M., Panozzo, J., and Jones, R. (2008). Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MS fragmentation. Phytochemistry 69, 1671–1679. https://doi.org/10.1016/j.phytochem.2008.02.010.

  • Shahidi, F., Daun, J.K., and DeClercq, D.R. (1997). Glucosinolates in Brassica oilseeds: Processing effects and extraction. In Antinutrients and Phytochemicals in Food, p. 152–170. https://doi.org/10.1021/bk-1997-0662.ch009.

  • Sherma, J. (2000). Thin-layer chromatography in food and agricultural analysis. J. Chromatography A 880, 129–147. https://doi.org/10.1016/S0021-9673(99)01132-2.

  • Sikorska-Zimny, K., and Beneduce, L. (2021). The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit. Rev. Food Sci. Nutr. 61(15), 2544–2571. https://doi.org/10.1080/10408398.2020.1780193.

  • Tian, Q., Rosselot, R.A., and Schwartz, S.J. (2005). Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 343(1), 93–99. https://doi.org/10.1016/j.ab.2005.04.045.

  • Van Dam, N.M., Tytgat, T.O., and Kirkegaard, J.A. (2009). Root and shoot glucosinolates: A comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 8, 171–186. https://doi.org/10.1007/s11101-008-9101-9.

  • Van Leur, H., Raaijmakers, C.E., and Van Dam, N.M. (2006). A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry 67(12), 1214–1223. https://doi.org/10.1016/j.phytochem.2006.04.021.

  • Wagner, H., and Bladt, S. (1996). Plant Drug Analysis, a Thin Layer Chromatography Atlas, 2nd edn. (Springer-Verlag). https://doi.org/10.1007/978-3-642-00574-9.

  • Wieczorek, M.N., Walczak, M., Skrzypczak-Zielińska, M., and Jeleń, H.H. (2018). Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Critical Rev. Food Sci. Nutr. 58(18), 3130–3140. https://doi.org/10.1080/03670240902794630.

Received: 2 October 2023 | Accepted: 5 November 2023 | Published: 31 December 2023 | Available online: 31 December 2023

previous article     Volume 78 issue 4     next article