an article



ISHS Contact


  Fruits 74 (2) 55-64 | DOI: 10.17660/th2019/74.2.1
ISSN 0248-1294 print and 1625-967X online | © ISHS 2019 | Fruits, The International Journal of Tropical and Subtropical Horticulture | Original article

Characterization of local fig clones (Ficus carica L.) collected in Northern Morocco

L. Hssaini1,2, H. Hanine2, R. Razouk1, S. Ennahli3, A. Mekaoui1 and J. Charafi1,a
1 National Institute for Agricultural Research (INRA), P.O. Box 578, 50000, Regional Center of Meknes, Morocco
2 Laboratory of Bioprocess and Bio-Interfaces, Sultan Moulay Slimane University, Faculty of Sciences and Technology, P.O. Box 523, Beni-Mellal, Morocco
3 National School of Agriculture, P.O. Box S/40, Meknes, 50001, Morocco

Introduction – A survey of family yards and traditional orchards was conducted to collect and evaluate phenotypic variation of fig (Ficus carica L.) accessions grown in Northern Morocco. Materi­als and methods – 20 local farmers were surveyed to identify different fig accessions grown in three northern regions of Morocco (Taounate, Ouazzane, and Meknes). The survey targeted the varietal pro­file of cultivated fig trees, propagation methods and selection and denomination criteria. Fruit samples were collected, and their pomological and colorimetric traits were characterized. In total, 33 descriptors established by IPGRI were used, 22 of which were qualitative and 11 of which were quan­titative. Results and discussion – Pomologic and colo­rimetric analysis revealed a wide range of variation and highly significant level of variability (p < 0.05) among all sampled genotypes. The principal com­ponent analysis revealed two mean groups with a total inertia of 78.7% based on the quantitative traits. While three distinctive groups with a total inertia of 90.92% were found based on pomolog­ical traits. Pomology analysis exhibited a domi­nance of both globose and rounded shapes. Most of the genotypes have skin ribs and did not pres­ent the drop at the ostiole. Hierarchical ascendant classification (HAC) performed on all 38 variables (color and pomological descriptors) resulted in two main clusters. With the exception of ‘Ghoudan’ and ‘Ghani’, all genotypes with the same denomi­nations were clustered into the same group. Conclu­sion – This work revealed a mislabeling within the local fig germplasm according to morphological, pomological and colorimetric traits of collected figs. This problem was found to be correlated to de­nomination criteria used by local farmers. Indeed, the combination of pomological and colorimetric parameters exhibited an important level of dis­crimination.

Keywords germplasm characterization, fig diversity, fig denominations, skin color, survey

Significance of this study

What is already known on this subject?

  • In Morocco, the cultivation of fig trees is of particular importance. However, the varietal diversity remains confusing and undocumented.
What are the new findings?
  • Moroccan figs have a polyclonal origin with large varietal confusion due to mislabeling problems that hinder the fig germplasm development.
What is the expected impact on horticulture?
  • The findings are of importance for planning fig genetic resources inventory, preserving the existing genetic variability and establishing national collections.

Download fulltext version
    subscribers & pay-per-view - check for available options and price details
How to cite this article       Export citation to RIS format      



  • Abou-Ellail, M., Mahfouze, S.A., El-Enany, M.A., and Mustafa, N.S.A. (2014). Using biochemical and simple sequence repeats (SSR) markers to characterize (Ficus carica L.) cultivars. World Applied Sci. J. 29(3), 313–321.

  • Ahmad, R., Potter, D., and Southwick, S.M. (2004). Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J. Am. Soc. Hortic. Sci. 129(2), 204–210.

  • Aljane, F., Ferchichi, A., and Boukhris, M. (2008). Pomological characteristics of local fig (Ficus carica) cultivars in Southern Tunisia. Acta Hortic. 798, 123–128.

  • Ater, M., El Oualkadi, A., Achtak, H., Oukabli, A., and Khadari, B. (2008). Diversity of the local varieties of the Fig tree in the North-Western Morocco. Acta Hortic. 798, 69–76. .

  • Ateyyeh, A.F., and Sadder, M.T. (2006). Growth pattern and fruit characteristics of six common fig (Ficus carica L.) cultivars in Jordan. Jordan J. Agric. Sci. 2(2), 105–112.

  • Badgujar, S., Patel, V., Bandivdekar, A., and Mahajan, R. (2014). Traditional uses. Phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 52(11), 1487–1503. .

  • Bandelj, D., Javornik, B., and Jakse, J. (2007). Development of microsatellite markers in the common fig, Ficus carica L. Molec. Ecol. Notes 7(6), 1311–1314.

  • Baric, S., Storti, A., Hofer, M., and Dalla Via, J. (2009). Molecular genetic characterisation of apple cultivars from different germplasm collections. Acta Hortic. 817, 347–354.

  • Benettayeb, Z.E., Bencheikh, M., Setti, B., and Chaillou, S. (2017). Genetic diversity of Algerian fig (Ficus carica L.) cultivars based on morphological and quality traits. The Hortic. Soc. of India (Regd.) 74(3), 311–316.

  • Çaliskan, O., and Polat, A.A. (2012). Morphological diversity among fig (Ficus carica L.) accessions sampled from the Eastern Mediterranean Region of Turkey. Turkish J. Agric. and Forestry 36(2), 179–193.

  • Djordjevic, B., Rakonjac, V., Akšic, M.F., Šavikin, K., and Vulic, T. (2014). Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 165, 156–162. .

  • Fachinello, J.C. (2005). Propagação de plantas frutíferas (Brasília: Embrapa Informação Tecnológica), 221 pp.

  • Francis, F.J. (1980). Color quality evaluation of horticultural crops. HortScience 15, 58–59.

  • Gaaliche, B., Saddoud, O., and Mars, M. (2012). Morphological and pomological diversity of fig (Ficus carica L.) cultivars in northwest of Tunisia. ISRN Agronomy, Article nr. ID 326461.

  • Giraldo, E., Viruel, M.A., López-Corrales, M., and Hormaza, J.I. (2005). Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J. Hortic. Sci. Biotechnol. 80(2), 217–224.

  • Gozlekci, S. (2011). Pomological traits of fig (Ficus carica L.) genotypes collected in the west Mediterranean region in Turkey. J. Animal & Plant Sci. 21(4), 646–652.

  • Hill, T., and Lewicki, P. (2007). Statistics Methods and Applications (Tulsa, USA: Statsoft).

  • Hirst, K. (1996). Fig trees and archaeology. The history of the domestication of Fig trees. Archaeology.

  • Hmimsa, Y., Aumeeruddy-Thomas, Y., and Ater, M. (2017). Une forme spontanée de figuier (Ficus carica L.). Le nabut. Revue d’ethnoécologie.

  • Itle, R.A., and Kabelka, E.A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience 44(3), 633–637.

  • Khadari, B., Hochu, I., Santoni, S., and Kjellberg, F. (2001). Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Molec. Ecol. Notes 1(3), 191–193.

  • Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J.P., and Kjellberg, F. (2005). Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience 40(1), 29–32.

  • Khadari, B. (2012). Ex situ management of fig (Ficus carica L.) genetic resources: towards the establishment of the Mediterranean reference collection. Acta Hortic. 940, 67–74. .

  • Khadivi, A., Anjam, R., and Anjam, K. (2018). Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Sci. Hortic. 238, 66–74.

  • Khadivi-Khub, A., Zamani, Z., and Fatahi, M.R. (2012). Multivariate analysis of Prunus subgen. cerasus germplasm in Iran using morphological variables. Gen. Res. and Crop Evol. 59(5), 909–926.

  • Koskitalo, L., and Ormrod, D. (1972). Effects of sub-optimal ripening temperatures on the color quality and pigment composition of tomato fruit. J. Food Sci. 37(1), 56–59.

  • Kus, P.M., Congiu, F., Teper, D., Sroka, Z., Jerkovic, I., and Tuberoso, C.I.G. (2014). Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT-Food Sci. Technol. 55(1), 124–130.

  • L’Africain, L. (1908). Description de l’Afrique: Tierce Partie du Monde (Paris: Ernest-Théodore Hamy, ed.).

  • Médail, F., and Quézel, P. (1999). Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv. Biol. 13(6), 1510–1513.

  • Minguez-Mosquera, M.I., Rejano-Navarro, L., Gandul-Rojas, B., Sanchez Gomez, A.H., and Garrido-Fernandez, J. (1991). Color-pigment correlation in virgin olive oil. J. Am. Oil Chemists’ Soc. 68(5), 332–336.

  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403(6772), 853.

  • Oukabli, A. (2002). Diversité génétique et choix des génotypes performants pour la culture du figuier Ficus carica L. au Maroc. In Actes de la Journée, Figuier, Potentialités et Perspectives de Développement de la Figue Sèche au Maroc (Meknès, Maroc), p. 10–21.

  • Pissarra, J., Mateus, N., Rivas-Gonzalo, J., Santos Buelga, C., and Freitas, V. (2003). Reaction between malvidin 3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci. 68(2), 476–481.

  • Podgornik, M., Vuk, I., Vrhovnik, I., and Mavsar, D. (2010). A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Sci. Hortic. 125(3), 380–389.

  • Radivojevic, D.D., Milivojevic, J.M., Oparnica, C.D., Vulic, T.B., Djordjevic, B.S., and Ercisli, S. (2014). Impact of early cropping on vegetative development, productivity, and fruit quality of Gala and Braeburn apple trees. Turkish J. Agric. and Forestry 38(6), 773–780.

  • Rival, L., and McKey, D. (2008). Domestication and diversity in manioc (Manihot esculenta Crantz ssp. esculenta, Euphorbiaceae). Current Anthrop. 49(6), 1119–1128.

  • Sarkhosh, A., Zamani, Z., Fatahi, R., Hassani, M.E., Wiedow, C., Buck, E., and Gardiner, S.E. (2011). Genetic diversity of Iranian soft-seed pomegranate genotypes as revealed by fluorescent-AFLP markers. Physiol. and Molec. Biol. of Plants 17(3), 305.

  • Soriano Niebla, J.J. (2004). Hortelanos de la Sierra de Cadiz: Las variedades locales y el conocimiento campesino sobre el manejo de los recursos geneticos (Egea Impresores SL).

  • Stinco, C.M., Rodríguez-Pulido, F.J., Escudero-Gilete, M.L., Gordillo, B., Vicario, I.M., and Meléndez-Martínez, A.J. (2013). Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res. Int. 50(1), 111–120.

  • Tamboli, B.D., Sawale, D.D., Jagtap, P.B., Nimbalkar, R.U., and Teke, S.R. (2015). Effect of micronutrients on yield and fruit quality of fig on Inceptisol. Indian J. Hortic. 72(3), 419–422.

  • Viana, A.P., Pereira, T.N.S., Pereira, M.G., de Souza, M.M., Maldonado, J.F.M., and do Amaral Júnior, A.T. (2003). Simple and canonic correlation between agronomical and fruit quality traits in yellow passion fruit (Passiflora edulis f. flavicarpa) populations. Crop Breeding and Appl. Biotechnol. 3(2), 133–140.

  • Viuda-Martos, M., Barber, X., Pérez-Álvarez, J., and Fernández- López, J. (2015). Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Ind. Crops and Prod. 69, 472–479.

  • Watson, J.W. (2002). Home Gardens and In Situ Conservation of Plant Genetic Resources in Farming Systems (Bioversity International).

  • Wrolstad, R., Durst, R., and Lee, J. (2005). Tracking color and pigment changes in anthocyanin products. Trends in Food Sci. & Technol. 16(9), 423–428.

Received: 26 November 2018 | Accepted: 15 March 2019 | Published: 23 April 2019 | Available online: 23 April 2019

previous article     Volume 74 issue 2     next article