ISHS
  eJHS
     
EJHS
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

eJHS
  Eur.J.Hortic.Sci. 87 (4) 1-9 | DOI: 10.17660/eJHS.2022/038
ISSN 1611-4426 print and 1611-4434 online | © ISHS 2022 | European Journal of Horticultural Science | Original article

Onion AcCOP10 ectopia overexpression regulates flowering and seedling photomorphogenesis in Arabidopsis

Lei Qin1,2, Yang Xu1,2, Jie Sheng1,2, Qingzhe Yin1,2, Hongzhi Xu1,2, Yifan Geng1,2 and Yong Wang1,2
1 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, P.R. China
2 Department of Agricultural Economics, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran

SUMMARY
Onion (Allium cepa L.) is a biennial vegetable crop response to the appropriate photoperiod in flowering and bulb forming. COP10 (CONSTITUTIVE PHOTOMORPHOGENIC 10) is a member of ubiquitin E2 variant (UEV) protein family, which is forming a complex with damage binding protein (DDB1) and de-etiolated 1 (DET1) to regulate plant flowering and seedling development. In this study, we cloned AcCOP10 from onion and the role of AcCOP10 in flowering regulation and seedling photomorphogenesis were studied using AcCOP10-overexpression transgenic lines in Arabidopsis. The cDNA of AcCOP10 was 531 bp, encoding a 176 amino acid protein, which contains conserved regions of UEV protein. Tissue expression pattern analysis preformed that AcCOP10 had the highest expression in the leaf sheath after bolting. Overexpression of AcCOP10 delayed the flowering time of the wild type and cop10 mutant in Arabidopsis. Transcript levels analysis showed expression of AtCO and AtFT decreased in transgenic lines. Moreover, AcCOP10 compensated the extreme phenotype of cop10 in hypocotyl development in the dark. The expression of ELONGATED HYPOCOTYL 5 (AtHY5) was suppressed when AcCOP10 overexpressed. These results predicted that AcCOP10 might involve in flowering regulation and seedling photomorphogenesis.

Keywords onion, AcCOP10, overexpression, flowering, seedling morphogenesis, Arabidopsis

Significance of this study

What is already known on this subject?

  • COP10 is a member of ubiquitin E2 variant (UEV) protein family, which is forming a complex with damage binding protein (DDB1) and de-etiolated 1 (DET1) to regulate plant flowering and seedling development in plants. However, the function of AcCOP10 in onion was unclear.
What are the new findings?
  • AcCOP10 played a negative role in plant flowering regulation under LD. Overexpression of AcCOP10 delayed the flowering time of wild type and cop10 mutant of Arabidopsis with decreasing the expression of AtCO and AtFT. Overexpressed AcCOP10 in cop10 restored the abnormal phenotype of hypocotyl development. AcCOP10 might participate in plant hypocotyl development by suppressing the transcripts level of AtHY5.
What is the expected impact on horticulture?
  • Onion is one of the most widespread vegetables. The bulb initiation, flowering and seed production of onion were under the control of light photoperiod. This study contributes to reveal the mechanism of onion flowering and to guide the onion seed production.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: yongwang@neau.edu.cn  

References

  • An, H.L., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., and Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131(15), 3615–3626. https://doi.org/10.1242/dev.01231.

  • Chory, J., Peto, C., Feinbaum, R., Pratt, L., and Ausubel, F. (1989). Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58(5), 991–999. https://doi.org/10.1016/0092-8674(89)90950-1.

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Molec. Biol. 16(6), 735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x.

  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827), 1030–1033. https://doi.org/10.1126/science.1141752.

  • Dalvi, V.S., Patil, Y.A., Krishna, B., Sane, P.V., and Sane, A.P. (2019). Indeterminate growth of the umbel inflorescence and bulb is associated with increased expression of the TFL1 homologue, AcTFL1, in onion. Plant Sci. 287. https://doi.org/10.1016/j.plantsci.2019.110165.

  • Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2), 351–361. https://doi.org/10.1016/S0092-8674(00)00126-4.

  • Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71(5), 791–801. https://doi.org/10.1016/0092-8674(92)90555-Q.

  • Hofmann, R.M., and Pickart, C.M. (1999). Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96(5), 645–653. https://doi.org/10.1016/S0092-8674(00)80575-9.

  • Jack, T. (2004). Molecular and genetic mechanisms of floral control. Plant Cell 16, S1–17. https://doi.org/10.1105/tpc.017038.

  • Jang, S., Marchal, V., Panigrahi, K.C.S., Wenkel, S., Soppe, W., Deng, X.W., Valverde, F., and Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. Embo J. 27(8), 1277–1288. https://doi.org/10.1038/emboj.2008.68.

  • Kang, M.Y., Kwon, H.Y., Kim, N.Y., Sakuraba, Y., and Paek, N.C. (2015a). CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) contributes to floral repression under non-inductive short days in Arabidopsis. Intl. J. Molec. Sci. 16(11), 26493–26505. https://doi.org/10.3390/ijms161125969.

  • Kang, M.Y., Yoo, S.C., Kwon, H.Y., Lee, B.D., Cho, J.N., Noh, Y.S., and Paek, N.C. (2015b). Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Sci. Rep. 5, 9728. https://doi.org/10.1038/srep09728.

  • Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science (New York, NY) 286(5446), 1962–1965. https://doi.org/10.1126/science.286.5446.1962.

  • Koonin, E.V., and Abagyan, R.A. (1997). TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nature Gen. 16(4), 330–331. https://doi.org/10.1038/ng0897-330.

  • Lancaster, J.E., De Ruiter, J.M., Triggs, C.M., and Gandar, P.W. (1996). Bulbing in onions: Photoperiod and temperature requirements and prediction of bulb size and maturity. Ann. Bot. 78, 423–430. https://doi.org/10.1006/anbo.1996.0138.

  • Lau, O.S., and Deng, X.W. (2009). Effect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues. Biochem. J. 418, 683–690. https://doi.org/10.1042/BJ20081943.

  • Lee, B.D., Cha, J.Y., Kim, M.R., Paek, N.C., and Kim, W.Y. (2018). Photoperiod sensing system for timing of flowering in plants. BMB Rep. 51(4), 163–164. https://doi.org/10.5483/BMBRep.2018.51.4.052.

  • Lee, R., Baldwin, S., Kenel, F., McCallum, J., and Macknight, R. (2013). FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Commun. 4. https://doi.org/10.1038/ncomms3884.

  • Li, J., Terzaghi, W., Gong, Y.Y., Li, C.R., Ling, J.J., Fan, Y.Y., Qin, N.X., Gong, X.Q., Zhu, D.M., and Deng, X.W. (2020). Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Commun. 11(1). https://doi.org/10.1038/s41467-020-15394-7.

  • Liu, L.J., Zhang, Y.C., Li, Q.H., Sang, Y., Mao, J., Lian, H.L., Wang, L., and Yang, H.Q. (2008). COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20(2), 292–306. https://doi.org/10.1105/tpc.107.057281.

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods (San Diego, Cal.) 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.

  • Mettananda, K.A., and Fordham, R. (1997). The effects of 12 and 16 h daylength treatments on the onset of bulbing in 21 onion cultivars (Allium cepa L.) and its application to screening germplasm for use in the tropics. J. Hortic. Sci. Biotechnol. 72, 981–988. https://doi.org/10.1080/14620316.1997.11515590.

  • Nawkar, G.M., Kang, C.H., Maibam, P., Park, J.H., Jung, Y.J., Chae, H.B., Chi, Y.H., Jung, I.J., Kim, W.Y., Yun, D.J., and Lee, S.Y. (2017). HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 114(8), 2084–2089. https://doi.org/10.1073/pnas.1609844114.

  • Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405(6785), 462–466. https://doi.org/10.1038/35013076.

  • Rashid, M.H.A., and Thomas, B. (2020). Diurnal expression of Arabidopsis Gene homologs during daylength-regulated bulb formation in onion (Allium cepa L.). Sci. Hortic. 261. https://doi.org/10.1016/j.scienta.2019.108946.

  • Saijo, Y., Sullivan, J.A., Wang, H.Y., Yang, J.P., Shen, Y.P., Rubio, V., Ma, L.G., Hoecker, U., and Deng, X.W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes & Developm. 17(21), 2642–2647. https://doi.org/10.1101/gad.1122903.

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4(4), 406–425.

  • Sancho, E., Vila, M.R., Sanchez-Pulido, L., Lozano, J.J., Paciucci, R., Nadal, M., Fox, M., Harvey, C., Bercovich, B., Loukili, N., Ciechanover, A., Lin, S.L., Sanz, F., Estivill, X., Valencia, A., and Thomson, T.M. (1998). Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Molec. Cell. Biol. 18(1), 576–589. https://doi.org/10.1128/MCB.18.1.576.

  • Schwechheimer, C., and Deng, X.W. (2001). COP9 signalosome revisited: A novel mediator of protein degradation. Trends Cell Biol. 11(10), 420–426. https://doi.org/10.1016/S0962-8924(01)02091-8.

  • Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423(6943), 995–999. https://doi.org/10.1038/nature01696.

  • Suzuki, G., Yanagawa, Y., Kwok, S.F., Matsui, M., and Deng, X.W. (2002). Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes & Developm. 16(5), 554–559. https://doi.org/10.1101/gad.964602.

  • Takada, S., and Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15(12), 2856–2865. https://doi.org/10.1105/tpc.016345.

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec. Biol. Evol. 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121.

  • Taylor, A., Massiah, A.J., and Thomas, B. (2010). Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant Cell Physiol. 51(10), 1638–1647. https://doi.org/10.1093/pcp/pcq120.

  • Thomson, T.M., Khalid, H., Lozano, J.J., Sancho, E., and Arino, J. (1998). Role of UEV-1A, A homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Letters 423(1), 49–52. https://doi.org/10.1016/S0014-5793(98)00060-X.

  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660), 1003–1006. https://doi.org/10.1126/science.1091761.

  • VanDemark, A.P., Hofmann, R.M., Tsui, C., Pickart, C.M., and Wolberger, C. (2001). Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105(6), 711–720. https://doi.org/10.1016/S0092-8674(01)00387-7.

  • Von Arnim, A., and Deng, X.W. (1996). Light control of seedling development. Ann. Rev. Plant Physiol. & Plant Molec. Biol. 47, 215–243. https://doi.org/10.1146/annurev.arplant.47.1.215.

  • Wei, N., Kwok, S.F., von Arnim, A.G., Lee, A., McNellis, T.W., Piekos, B., and Deng, X.W. (1994). Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6(5), 629–643. https://doi.org/10.1105/tpc.6.5.629.

  • Xu, D.Q. (2020). COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytol. 228(6), 1748–1753. https://doi.org/10.1111/nph.16296.

  • Yanagawa, Y., Sullivan, J.A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J.N., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S., Wang, J., and Deng, X.W. (2004). Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes & Developm. 18(17), 2172–2181. https://doi.org/10.1101/gad.1229504.

  • Yu, J.W., Rubio, V., Lee, N.Y., Bai, S., Lee, S.Y., Kim, S.S., Liu, L., Zhang, Y., Irigoyen, M.L., Sullivan, J.A., Zhang, Y., Lee, I., Xie, Q., Paek, N.C., and Deng, X.W. (2008). COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molec. Cell 32(5), 617–630. https://doi.org/10.1016/j.molcel.2008.09.026.

  • Yuan, Q., Song, C., Gao, L., Zhang, H., Yang, C., Sheng, J., Ren, J., Chen, D., and Wang, Y. (2018). Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in onion. Plant Physiol. Biochem. 125, 35–44. https://doi.org/10.1016/j.plaphy.2018.01.015.

Received: 15 April 2021 | Accepted: 22 June 2021 | Published: 9 September 2022 | Available online: 9 September 2022

previous article     Volume 87 issue 4     next article