ISHS
  eJHS
     
EJHS
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

eJHS
  Eur.J.Hortic.Sci. 83 (1) 18-27 | DOI: 10.17660/eJHS.2018/83.1.3
ISSN 1611-4426 print and 1611-4434 online | © ISHS 2018 | European Journal of Horticultural Science | Original article

Genetic diversity analysis of apricot cultivars grown in China based on SSR markers

Ming Li1, Pinguang Zheng2, Biyong Ni2, Xia Hu1, Xingjun Miao3 and Zhong Zhao3
1 Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
2 Fuzhou Botanical Garden, Fuzhou, China
3 Key Laboratory of Environment and Ecology in Western China of Ministry of Education, College of Forestry, Northwest A&F University, Yangling, China

SUMMARY
The simple sequence repeat (SSR) markers were used to investigate the genetic diversity and relationships of 76 accessions of the main cultivated apricot cultivars in China. The 10 SSR markers revealed that the observed number of alleles (na) per locus was 4.6, the number of effective alleles (ne) was 3.46, and a higher value of genetic diversity parameters (He=0.65, I=1.26) was maintained at the species level. The genetic diversity in the Chinese group and Central Asian group was high, whereas the genetic diversity in the European group was possible low. UPGMA dendrogram and genetic structure analysis determined seven major clusters and grouped the cultivars in agreement with their geographic and species origins. The European group showed a very close genetic relationship with the North American subgroup and a distant genetic relationship with the Chinese and Central groups. The Irano-Caucasian group had a close genetic relationship with the apricot germplasms originated in Xinjiang, China. Additionally, the Chinese group and Central Asian group shared a few of similar genetic structure. The kernel-using apricot had a close genetic relationship with Prunus sibirica and was most likely an interspecific hybrid of P. sibirica and Prunus armeniaca.

Keywords apricot, genetic diversity, genetic relationship, genetic structure, polymorphic, Prunus armeniaca

Significance of this study

What is already known on this subject?

  • The existing gene pool of the cultivated apricot in China is rich, but some local cultivars are facing serious genetic erosion, which means that accurate description and identification of apricot cultivars is necessary for the protection and utilization.
What are the new findings?
  • The 10 SSR markers revealed that apricot cultivars grown in China maintained a relatively high level of genetic diversity (He=0.65, I=1.26). The genetic diversity in the Chinese group and the Central Asian group was high, whereas the genetic diversity in the European group was possible low. UPGMA dendrogram and genetic structure analysis determined seven major clusters and grouped the cultivars in agreement with their geographic and species origins.
What is the expected impact on horticulture?
  • We expected to provide a reference for the major traits, genetic diversity, and genetic relationships of cultivated apricot varieties in China, and enhance the protection and utilization of resources and breeding.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: lake-autumn@163.com  

References

  • Ai, P.F., Zhen, Z.J., and Jin, Z.Z. (2011). Genetic diversity and relationships within sweet kernel apricot and related Armeniaca species based on sequence-related amplified polymorphism markers. Biochem. Syst. & Ecol. 39, 694–699. https://doi.org/10.1016/j.bse.2011.05.026.

  • Ai, P.F., Shan, S.U., and Jin, Z.Z. (2014). Analysis of genetic diversity and development of fingerprinting key among accessions of kernel-using apricot Using SRAP markers. Acta Hortic. Sinica 41, 1191–1197.

  • Bourguiba, H., Krichen, L., Audergon, J.M., Khadari, B., and Trifi-Farah, N. (2010). Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol. Biol. Rep. 28, 578–587. https://doi.org/10.1007/s11105-010-0189-x.

  • Bourguiba, H., Audergon, J.M., Krichen, L., Trifi-Farah, N., Mamouni, A., Trabelsi, S., D'Onofrio, C., Asma, B., Santoni, S., and Khadari, B. (2012). Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol. 12, 1. https://doi.org/10.1186/1471-2229-12-49.

  • Decroocq, V., Fave, M.G., Hagen, L., Bordenave, L., and Decroocq, S. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. and Appl. Gen. 106, 912–922. https://doi.org/10.1007/s00122-002-1158-z.

  • Decroocq, S., Cornille, A., Tricon, D., Babayeva, S., Chague, A., Eyquard, J.P., Karychev, R., Dolgikh, S., Kostritsyna, T., Liu, S., Liu, W., Geng, W., Liao, K., Asma, B.M., Akparov, Z., Giraud, T., and Decroocq, V. (2016). New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 19, 4712–4729. https://doi.org/10.1111/mec.13772.

  • Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.

  • Fu, Y.B. (2015). Understanding crop genetic diversity under modern plant breeding. Theor. and Appl. Gen. 128, 2131–2142. https://doi.org/10.1007/s00122-015-2585-y.

  • Hagen, L., Khadari, B., Lambert, P., and Audergon, J.M. (2002). Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor. and Appl. Gen. 105, 298–305. https://doi.org/10.1007/s00122-002-0910-8.

  • He, T.M., Chen, X.S., Zheng, X., Gao, J.S., Lin, P.J., Wen, L., Qing, L., and Yan, W. (2007). Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Gen. Res. and Crop Evol. 54, 563–572. https://doi.org/10.1007/s10722-006-0013-5.

  • Hormaza, J.I., Yamane, H., and Rodrigo, J. (2007). Apricot. In Genome Mapping and Molecular Breeding in Plants, C. Kole, ed. (Berlin: Springer), p. 171–187. https://doi.org/10.1007/978-3-540-34533-6_7.

  • Kostina, K.F. (1964). Application of phytogeographical method to apricot classification. Trud. Nikit. Bot. Sad. 37, 45–63.

  • Krichen, L., Bourguiba, H., Audergon, J.-M., and Trifi-Farah, N. (2010). Comparative analysis of genetic diversity in Tunisian apricot germplasm using AFLP and SSR markers. Sci. Hortic. 127, 54–63. https://doi.org/10.1016/j.scienta.2010.09.012.

  • Kryukova, I.V. (1989). Botanical classification and geographical distribution. In Apricot, V.K. Smykov, ed. (Moscow, USSR: Agropromizdat), p. 9–23.

  • Laidò, G., Mangini, G., Taranto, F., Gadaleta, A., Blanco, A., Cattivelli, L., Marone, D., Mastrangelo, A., Papa, R., and De Vita, P. (2013). Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data. PLoS ONE 8:e67280. https://doi.org/10.1371/journal.pone.0067280.

  • Li, M., Zhao, Z., Miao, X., and Zhou, J. (2014). Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci. 15, 377–400. https://doi.org/10.3390/ijms15010377.

  • Liu, W., Liu, D., Zhang, A., Feng, C., Yang, J., Yoon, J., and Li, S. (2007). Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with Inter-simple Sequence Repeat Markers. J. Am. Soc. Hortic. Sci. 132, 619–628.

  • Liu, W., Liu, N., Zhang, Y., Yu, X., Sun, M., Xu, M., Zhang, Q., and Liu, S. (2012). Kernel-using apricot resources and its utilization. Acta Hortic. 966, 189–191. https://doi.org/10.17660/ActaHortic.2012.966.29.

  • Liu, Y.C., Chen, W.Z., Liu, W.S., Liu, N., Zhang, Y.P., and Liu, S. (2010). Palynological study on the origin and systematic evolution of kernel-using apricots. Acta Hortic. Sinica 37, 1377–1387.

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323. https://doi.org/10.1073/pnas.70.12.3321.

  • Ouborg, N.J., Vergeer, P., and Mix, C. (2006). The rough edges of the conservation genetics paradigm for plants. J. Ecol. 94, 1233–1248. https://doi.org/10.1111/j.1365-2745.2006.01167.x.

  • Peakall, R., and Smouse, P.E. (2012). GenAlEx 6.5. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460.

  • Pedryc, A., Ruthner, S., Hermán, R., Krska, B., Hegedűs, A., and Halász, J. (2009). Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci. Hortic. 121, 19–26. https://doi.org/10.1016/j.scienta.2009.01.014.

  • Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

  • Romero, C., Pedryc, A., Muñoz, V., Llácer, G., and Badenes, M.L. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46, 244–252. https://doi.org/10.1139/g02-128.

  • Shannon, C.E. (2001). A mathematical theory of communication. Acm Sigmobile Mob. Comp. and Commun. Rev. 5, 3–55. https://doi.org/10.1145/584091.584093.

  • Soldatov, I.V., and Petr, S. (2007). Hybridization of domestic prunes with black apricot (Prunus domestica L. × Armeniaca dasycarpa Ehrh.). Acta Univ. Agric. et Silvicult. Mendel. Brun. 55, 147–154. https://doi.org/10.11118/actaun200755050147.

  • Sreekanth, P., Balasundaran, M., Nazeem, P., and Suma, T. (2012). Genetic diversity of nine natural Tectona grandis Lf populations of the Western Ghats in Southern India. Conserv. Gen. 13, 1409–1419. https://doi.org/10.1007/s10592-012-0383-5.

  • Wang, Y., Zhang, J., Sun, H., Ning, N., and Yang, L. (2011). Construction and evaluation of a primary core collection of apricot germplasm in China. Sci. Hortic. 128, 311–319. https://doi.org/10.1016/j.scienta.2011.01.025.

  • Yeh, F.C., Yang, R.C., Boyle, T.B., Ye, Z., and Mao, J.X. (1997). POPGENE, the user-friendly shareware for population genetic analysis (Canada: University of Alberta, Molecular Biology and Biotechnology Centre), p. 10.

  • Yilmaz, K., Paydas-Kargi, S., Dogan, Y., and Kafkas, S. (2012). Genetic diversity analysis based on ISSR, RAPD and SSR among Turkish apricot germplasms in Iran Caucasian eco-geographical group. Sci. Hortic. 138, 138–143. https://doi.org/10.1016/j.scienta.2012.02.017.

  • Zhang, L., Chen, X., Chen, X., Zhang, C., Liu, X., Ci, Z., Zhang, H., Wu, C., and Liu, C. (2008). Identification of self-incompatibility (S-) genotypes of Chinese apricot cultivars. Euphytica 160, 241–248. https://doi.org/10.1007/s10681-007-9544-x.

  • Zhang, Q.P., Liu, D.C., Liu, W.S., Liu, S., Zhang, A.M., Ning, L., and Zhang, Y.P. (2013). Genetic diversity and population structure of the North China populations of Apricot (Prunus armeniaca L.). Sci. Agric. Sinica 46, 89–98.

  • Zhang, Q.P., Liu, D.C., Liu, S., Liu, N., Wei, X., Zhang, A.M., and Liu, W.S. (2014). Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Gen. Res. and Crop Evol. 61, 1–12. https://doi.org/10.1007/s10722-013-0039-4.

  • Zhebentyayeva, T., Reighard, G., Gorina, V., and Abbott, A. (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. and Appl. Gen. 106, 435–444. https://doi.org/10.1007/s00122-002-1069-z.

  • Zhebentyayeva, T., Reighard, G., Lalli, D., Gorina, V., Krška, B., and Abbott, A. (2008). Origin of resistance to plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genet. & Gen. 4, 403–417. https://doi.org/10.1007/s11295-007-0119-8.

  • Zhebentyayeva, T., Ledbetter, C., Burgos, L., and Llácer, G. (2012). Apricot. In Fruit Breeding. Handbook of Plant Breeding, Vol. 8, M.L. Badenes, and D.H. Byrne, eds. (New York: Springer), p. 415–457. https://doi.org/10.1007/978-1-4419-0763-9_12.

Received: 31 January 2017 | Accepted: 4 July 2017 | Published: 22 February 2018 | Available online: 22 February 2018

previous article     Volume 83 issue 1     next article