ISHS
  Fruits
     
Fruits
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

Fruits
  Fruits 72 (1) 47-54 | DOI: 10.17660/th2017/72.1.5
ISSN 0248-1294 print and 1625-967X online | © ISHS 2017 | Fruits, The International Journal of Tropical and Subtropical Horticulture | Original article

Deficit irrigation strategies and their impact on yield and nutritional quality of pomegranate fruit

T. Centofanti1, G.S. Bañuelos2, C.M. Wallis2 and J.E. Ayars2
1Center for Irrigation Technology, California State University Fresno, Fresno, CA 93740, USA
2USDA, Agricultural Research Service, San Joaquin Valley Agricultural Science Center, Parlier, CA 93648-9757, USA

SUMMARY
Introduction – The cultivation of drought tolerant crops and the application of deficit irrigation (DI) strategies are necessary agronomic measures for sustainable agriculture in arid regions of the world and in areas that are experiencing recurrent water shortages (i.e., Central California). Pomegranate is a drought tolerant fruit tree and is extensively cultivated in arid and semi-arid regions of the world. The objective of this study was to evaluate the physiological response of pomegranate trees subject to DI for two years relative to fruit yield and quality. Materials and methods – In this 2-year study, pomegranate trees (Punica granatum L. 'Wonderful') grown in Central California were treated with four different DI treatments [35, 50, 75 and 100% evapotranspiration (ETlys)] and tree physiological responses were evaluated relative to fruit yield and nutritional quality (including pH, soluble solids, total phenolic compounds, anthocyanin and non-anthocyanin compounds, and mineral elements). Results and discussion – The DI strategies, as low as 35% Etc, did not significantly affect the yield, fruit color, pH, concentration of soluble solids, total phenolic compounds, anthocyanin and non- anthocyanin compounds, and mineral elements. Conclusion – Longer-term studies are needed to better predict physiological responses to water deficit management at orchard and individual tree level relative to productivity and nutritional quality of the pomegranate fruit.

Résumé
Stratégies d’irrigation déficitaire et leur impact sur le rendement et la qualité nutritionnelle des fruits du grenadier.
Introduction – La culture d'espèces végétales tolérantes à la sécheresse et l'application de stratégies d'irrigation déficitaire (DI) sont des méthodes agronomiques permettant d’assurer une agriculture durable dans les zones arides ou qui connaissent des pénuries d'eau récurrentes (i.e., le centre de la Californie). Le grenadier est une espèce arboricole fruitière tolérante à la sécheresse, largement cultivée dans les régions arides et semi-arides du monde. L’objectif de cette étude était d'évaluer la réponse physiologique des grenadiers soumis à une DI pendant deux ans, à partir du rendement et de la qualité des fruits. Matériel et méthodes – Les grenadiers (Punica granatum L. 'Wonderful') cultivés en Californie centrale ont été soumis durant deux ans à quatre traitements de DI différents [35, 50, 75 et 100% évapotranspiration (ETlys)]. Les réponses physiologiques des arbres ont été évaluées par des mesures de la production fruitière et de qualité des fruits (y-compris le pH, les solides solubles, composés phénoliques totaux, anthocyanes et composés non-anthocyanes, et éléments minéraux). Résultats et discussion – Une stratégie de DI aussi basse que 35% Etc n'a pas affecté de façon significative le rendement fruitier, la couleur des fruits, le pH, les concentrations en matières solubles, en composés phénoliques totaux, anthocyanes et composés non-anthocyanes, ni en éléments minéraux des fruits. Conclusion – Des études à plus long terme sont nécessaires pour mieux prédire les réponses physiologiques à la gestion de déficit en eau de vergers ou d’arbres individuels en matière de productivité fruitière et de qualité nutritionnelle des grenades.

Keywords USA, pomegranate, Punica granatum, water stress, sustainable agriculture, phenolics

Mots clés États-Unis, grenade, Punica granatum, stress hydrique, agriculture durable, composés phénoliques

Significance of this study

What is already known on this subject?

  • Deficit irrigation strategies and cultivation of drought-tolerant crops are agronomic measures used in arid regions and in areas with recurrent water shortages.
What are the new findings?
  • The application of deficit irrigation strategies, as low as 35% of ETc, did not affect fruit yield and nutritional quality of pomegranates within a given year.
What is the expected impact on horticulture?
  • Deficit irrigation may be a strategy to reduce water usage without impacting fruit nutritional quality, and to increase agricultural sustainability in arid regions.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: tiziana.centofanti@gmail.com  

References

  • Al-Maiman, S.A., and Ahmad, D. (2002). Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chem. 76, 437–441. https://doi.org/10.1016/S0308-8146(01)00301-6.

  • Baiocchi, G., and Distaso, W. (2003). GRETL: Econometric software for the GNU generation. J. Appl. Econom. 18, 105–110. https://doi.org/10.1002/jae.704.

  • Bañuelos, G.S., and Akohoue, S. (1994). Comparison of microwave digestion with block digestion for selenium and boron analysis in plant tissues. Commun. Soil Sci. Plant Anal. 25, 1655–1670. https://doi.org/10.1080/00103629409369142.

  • Bañuelos, G.S., and Lin, Z.Q. (2010). Cultivation of the Indian fig Opuntia in selenium-rich drainage sediments under field conditions. Soil Use Manag. 26, 167–175. https://doi.org/10.1111/j.1475-2743.2010.00258.x.

  • Bhantana, P., and Lazarovitch, N. (2010). Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agric. Water Manag. 97, 715–722. https://doi.org/10.1016/j.agwat.2009.12.016.

  • Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L., and Lopes, C.M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot. 105, 661–676. https://doi.org/10.1093/aob/mcq030.

  • Di Nunzio, M., Toselli, M., Verardo, V., Caboni, M.F., and Bordoni, A. (2013). Counteraction of oxidative damage by pomegranate juice: influence of the cultivar. J. Sci. Food Agric. 93, 3565–3573. https://doi.org/10.1002/jsfa.6234.

  • Galindo, A., Rodríguez, P., Collado-González, J., Cruz, Z.N., Torrecillas, E., Ondoño, S., Corell, M., Moriana, A., and Torrecillas, A. (2014). Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agric. For. Meteorol. 194, 29–35. https://doi.org/10.1016/j.agrformet.2014.03.015.

  • Geerts, S., and Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 96, 1275–1284. https://doi.org/10.1016/j.agwat.2009.04.009.

  • Gil, M.I., Tomas-Barberan, F.A., Hess-Pierce, B., Holcroft, D.M., and Kader, A.A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 48, 4581–4589. https://doi.org/10.1021/jf000404a.

  • Hunter, R.S. (1942). Photoelectric tristimulus colorimetry with three filters. NBS circular C429 (Washington, D.C.: Department of Commerce).

  • Intrigliolo, D.S., and Castel, J.R. (2010). Response of plum trees to deficit irrigation under two crop levels: tree growth, yield and fruit quality. Irrig. Sci. 28, 525–534. https://doi.org/10.1007/s00271-010-0212-x.

  • Mellisho, C.D., Egea, I., Galindo, A., Rodríguez, P., Rodríguez, J., Conejero, W., Romojaro, F., and Torrecillas, A. (2012). Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agric. Water Manag. 114, 30–36. https://doi.org/10.1016/j.agwat.2012.06.010.

  • Mena, P., Galindo, A., Collado-González, J., Ondoño, S., García-Viguera, C., Ferreres, F., Torrecillas, A., and Gil-Izquierdo, A. (2013). Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice. J. Sci. Food Agric. 93, 1922–1927. https://doi.org/10.1002/jsfa.5991.

  • Mirdehghan, S.H., and Rahemi, M. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit. Sci. Hortic. (Amsterdam) 111, 120–127. https://doi.org/10.1016/j.scienta.2006.10.001.

  • Navarro, J.M., Botía, P., and Pérez-Pérez, J.G. (2015). Influence of deficit irrigation timing on the fruit quality of grapefruit (Citrus paradisi Mac.). Food Chem. 175, 329–336. https://doi.org/10.1016/j.foodchem.2014.11.152.

  • Orak, H., Yagar, H., and Isbilir, S. (2012). Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 21, 373–387. https://doi.org/10.1007/s10068-012-0049-6.

  • Pena, M.E., Artés-Hernández, F., Aguayo, E., Martínez-Hernández, G.B., Galindo, A., Artés, F., and Gómez, P.A. (2013). Effect of sustained deficit irrigation on physicochemical properties, bioactive compounds and postharvest life of pomegranate fruit (cv. Mollar de Elche). Postharvest Biol. Technol. 86, 171–180. https://doi.org/10.1016/j.postharvbio.2013.06.034.

  • Rashed, A., Wallis, C.M., Paetzold, L., Workneh, F., and Rush, C.M. (2013). Zebra chip disease and potato biochemistry: Tuber physiological changes in response to Candidatus Liberibacter solanacearum infection over time. Phytopathology 103, 419–426. https://doi.org/10.1094/PHYTO-09-12-0244-R.

  • Rodriguez, P., Mellisho, C.D., Conejero, W., Cruz, Z.N., Ortuno, M.F., Galindo, A., and Torrecillas, A. (2012). Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environ. Exp. Bot. 77, 19–24. https://doi.org/10.1016/j.envexpbot.2011.08.018.

  • Santesteban, L.G., Miranda, C., and Royo, J.B. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. Tempranillo. Agric. Water Manag. 98, 1171–1179. https://doi.org/10.1016/j.agwat.2011.02.011.

  • Schneider, A.D., Ayars, J.E., and Phene, C.J. (1996). Combining monolithic and repacked soil tanks for lysimeters from high water table sites. Appl. Eng. Agric. 12(6), 649–654. https://doi.org/10.13031/2013.25694.

  • Sentandreu, E., Cerdán-Calero, M., and Sendra, J.M. (2013). Phenolic profile characterization of pomegranate (Punica granatum) juice by high-performance liquid chromatography with diode array detection coupled to an electrospray ion trap mass analyzer. J. Food Compos. Anal. 30, 32–40. https://doi.org/10.1016/j.jfca.2013.01.003.

  • Singh, R.S., Sharma, B.D., Bhargava, R., and More, T.A. (2011). Introduction and evaluation of Anardana type pomegranate under hot arid conditions. Acta Hortic. 890, 239–242. https://doi.org/10.17660/ActaHortic.2011.890.33.

  • Singleton, V.L., Orthofer, R., and Lamuela-Raventós, R.M. (1998). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.

  • Teixeira da Silva, J. a., Rana, T.S., Narzary, D., Verma, N., Meshram, D.T., and Ranade, S.A. (2013). Pomegranate biology and biotechnology: A review. Sci. Hortic. (Amsterdam) 160, 85–107. https://doi.org/10.1016/j.scienta.2013.05.017.

  • Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., and Amir, R. (2007). Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem. 55, 9559–9570. https://doi.org/10.1021/jf071413n.

  • Viuda-Martos, M., Fernández-López, J., and Pérez-Álvarez, J.A. (2010). Pomegranate and its many functional components as related to human health: a review. Compr. Rev. Food Sci. Food Saf. 9, 635–654. https://doi.org/10.1111/j.1541-4337.2010.00131.x.

  • Wahid, A., and Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163, 723–730. https://doi.org/10.1016/j.jplph.2005.07.007.

  • Wallis, C.M., Chen, J., and Civerolo, E.L. (2012). Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiol. Mol. Plant Pathol. 78, 66–72. https://doi.org/10.1016/j.pmpp.2012.02.001.

Received: 5 May 2016 | Accepted: 25 October 2016 | Published: 27 January 2017 | Available online: 27 January 2017

previous article     Volume 72 issue 1     next article