ISHS
  eJHS
     
EJHS
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

eJHS
  Eur.J.Hortic.Sci. 81 (2) 106-114 | DOI: 10.17660/eJHS.2016/81.2.4
ISSN 1611-4426 print and 1611-4434 online | © ISHS 2016 | European Journal of Horticultural Science | Original article

A survey of carbon sequestration potential of orchards and vineyards in Italy

F. Scandellari1, G. Caruso2, G. Liguori3, F. Meggio4, A.M. Palese5, D. Zanotelli1, G. Celano5, R. Gucci2, P. Inglese3, A. Pitacco4 and M. Tagliavini1
1Faculty of Science and Technologies, Free University of Bolzano-Bozen, Bolzano, Italy
2Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
3Dipartimento Scienze Agrarie e Forestali (SAF), University of Palermo, Palermo, Italy
4Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padova, Legnaro (Padova), Italy
5Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni culturali (DiCEM), University of Basilicata, Matera, Italy

SUMMARY
Orchards and vineyards are important land use types in Southern Europe. In spite of their potential to sequester atmospheric C and to mitigate climate change, relatively little is known regarding the influx and outflux of C in these systems. The aim of this work is to provide data on the C budget, including net primary production (NPP), C removal through production, and C sequestration potential for the vine-yards and the main fruit tree species (apple, citrus, olive, and peach) grown in Italy. Standing biomass and NPP were measured, and net ecosystem exchange and net C balance assessed directly, through ei-ther eddy covariance technique, or considering NPP and heterotrophic respiration. Aboveground NPP ranged between 10 and 20 t ha-1 while, when directly assessed, belowground NPP was less than 20% of the total NPP. The C leaving the system through fruit production ranged between 2 and 3 t ha-1. Mature fruit tree ecosystems had positive net ecosystem productivity (ranging from 4.30 in Apple-2 to 7.5 t C ha-1 y-1 in Grape-1.) and net ecosystem carbon balance (ranging from 0.6 to 5.9 t C ha-1 y-1), indicating the potential of these systems to store C.

Keywords apple, carbon budget, citrus, grapevine, peach, olive, net primary production

Significance of this study

What is already known on this subject?

  • Fruit tree systems can fix significant amounts of carbon, but such potential has been largely unexplored.
What are the new findings?
  • Above-ground production is relatively constant across systems. All mature systems store carbon over the considered period.
What is the expected impact on horticulture?
  • Orchards and vineyards contribute negligibly to carbon emissions and this should be considered by policy makers.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: massimo.tagliavini@unibz.it  riccardo.gucci@unipi.it  

References

  • Almagro, M., López, J., Boix-Fayos, C., Albaladejo, J., and Martínez-Mena, M. (2010). Belowground carbon allocation patterns in a dry Mediterranean ecosystem: A comparison of two models. Soil Biol. Biochem. 42, 1549–1557. https://doi.org/10.1016/j.soilbio.2010.05.031.

  • Barr, A.G., Griffis, T.J., Black, T.A., Lee, X., Staebler, R.M., Fuentes, J.D., Chen, Z., and Morgenstern, K. (2002). Comparing the carbon budgets of boreal and temperate deciduous forest stands. Can. J. For. Res. 32, 813–822. https://doi.org/10.1139/x01-131.

  • Brunetto, G., Ventura, M., Scandellari, F., Ceretta, C.A., Kaminski, J., Melo, G.W., and Tagliavini, M. (2011). Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr. Cycl. Agroecosystems 90, 299–308. https://doi.org/10.1007/s10705-011-9430-8.

  • Caruso, G., Rapoport, H.F., and Gucci, R. (2013). Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrig. Sci. 31, 37–47. https://doi.org/10.1007/s00271-011-0286-0.

  • Ceccon, C., Panzacchi, P., Scandellari, F., Prandi, L., Ventura, M., Russo, B., Millard, P., and Tagliavini, M. (2011). Spatial and temporal effects of soil temperature and moisture and the relation to fine root density on root and soil respiration in a mature apple orchard. Plant Soil 342, 195–206. https://doi.org/10.1007/s11104-010-0684-8.

  • Ceschia, E., Béziat, P., Dejoux, J.F., Aubinet, M., Bernhofer, C., Bodson, B., Buchmann, N., Carrara, A., Cellier, P., Di Tommasi, P., Elbers, J.A., Eugster, W., Grünwald, T., Jacobs, C.M.J., Jans, W.W.P., Jones, M., Kutsch, W., Lanigan, G., Magliulo, E., Marloie, O., Moors, E.J., Moureaux, C., Olioso, A., Osborne, B., Sanz, M.J., Saunders, M., Smith, P., Soegaard, H., and Wattenbach, M. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric. Ecosyst. Environ. 139, 363–383. https://doi.org/10.1016/j.agee.2010.09.020.

  • Derner, J.D., and Schuman, G.E. (2007). Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. J. Soil Water Conserv. 62, 77–85.

  • Don, A., Osborne, B., Hastings, A., Skiba, U., Carter, M.S., Drewer, J., Flessa, H., Freibauer, A., Hyvonen, N., Jones, M.B., Lanigan, G.J., Mander, U., Monti, A., Djomo, S.N., Valentine, J., Walter, K., Zegada-Lizarazu, W., and Zenone, T. (2012). Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob. Change Biol. Bioenergy 4, 372–391. x. https://doi.org/10.1111/j.1757-1707.2011.01116.x.

  • Eglin, T., Ciais, P., Piao, S.L., Barre, P., Bellassen, V., Cadule, P., Chenu, C., Gasser, T., Koven, C., Reichstein, M., and Smith, P. (2010). Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus Ser. B-Chem. Phys. Meteorol. 62, 700–718. https://doi.org/10.1111/j.1600-0889.2010.00499.x.

  • FAOSTAT (2015). Retrieved May 14, 2015, from http://faostat3.fao.org/home/E.

  • Gianelle, D., Gristina, L., Pitacco, A., Spano, D., La Mantia, T., Marras, S., Meggio, F., Novara, A., Sirca, C., and Sottocornola, M. (2015). The role of vineyards in the carbon balance throughout Italy. In The greenhouse gas balance of Italy, Environmental science and engineering, R. Valentini, and F. Miglietta, eds. (Berlin, Heidelberg: Springer). pp. 159–171. https://doi.org/10.1007/978-3-642-32424-6_11.

  • Grayston, S.J., Vaughan, D., and Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56. https://doi.org/10.1016/S0929-1393(96)00126-6.

  • Gucci, R., Caruso, G., Bertolla, C., Urbani, S., Taticchi, A., Esposto, S., Servili, M., Sifola, M.I., Pellegrini, S., Pagliai, M., and Vignozzi, N. (2012). Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 41, 18–27. https://doi.org/10.1016/j.eja.2012.03.002.

  • Hargreaves, G.H., and Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99. https://doi.org/10.13031/2013.26773.

  • Hay, R.K.M. (1995). Harvest index: a review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126, 197–216. https://doi.org/10.1111/j.1744-7348.1995.tb05015.x.

  • IPCC (2000). Land Use, Land-Use Change, and Forestry. R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo, and D.J. Dokken, eds. (UK: Cambridge University Press). pp. 375

  • Janssens, I.A. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300, 1538–1542. https://doi.org/10.1126/science.1083592.

  • Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 38, 425–448. https://doi.org/10.1016/j.soilbio.2005.08.020.

  • Lardo, E. (2012). Study of carbon cycle and environmental sustainability in the vineyard systems for quality wine production Crop systems, forestry and environmental sciences. (PhD Thesis, International PhD School).

  • Liguori, G., Gugliuzza, G., and Inglese, P. (2009). Evaluating carbon fluxes in orange orchards in relation to planting density. J. Agric. Sci. 147, 637. https://doi.org/10.1017/S002185960900882X.

  • Lopez, A., Pollice, A., Lonigro, A., Masi, S., Palese, A.M., Cirelli, G.L., Toscano, A., and Passino, R. (2006). Agricultural wastewater reuse in Southern Italy. Desalination 187, 323–334. 1. https://doi.org/10.1016/j.desal.2005.04.091.

  • Lovett, G.M., Cole, J.J., and Pace, M.L. (2006). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152–155. https://doi.org/10.1007/s10021-005-0036-3.

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L., Schulze, E.-D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K.G., Bonal, D., Bonnefond, J.-M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.-L., Tang, J., Valentini, R., Vesala, T., and Janssens, I.A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x.

  • Martinez, C., Alberti, G., Cotrufo, M.F., Magnani, F., Zanotelli, D., Camin, F., Gianelle, D., Cescatti, A., and Rodeghiero, M. (2016). Belowground carbon allocation patterns as determined by the in-growth soil 13C technique across different ecosystem types. Geoderma 263, 140–150. https://doi.org/10.1016/j.geoderma.2015.08.043.

  • Nardino, M., Pernice, F., Rossi, F., Georgiadis, T., Facini, O., Motisi, A., and Drago, A. (2013). Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51, 63–74. https://doi.org/10.1007/s11099-012-0079-6.

  • Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Nouvellon, Y., Epron, D., Bonnefond, J.M., et al. (2008). Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation. Tree Physiol. 28, 1661–1674. https://doi.org/10.1093/treephys/28.11.1661.

  • Nie, S., Ge, T., Liu, C., and Xiao, H. (2011). Crop-assimilative carbon in the farmland ecosystem – an important source for carbon turnover in soil. Acta Agric. Scand. Sect. B-Soil Plant Sci. 61, 105–111. https://doi.org/10.1080/09064711003670862.

  • O’Mara, F.P. (2012). The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270. https://doi.org/10.1093/aob/mcs209.

  • Olesen, J.E., and Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16, 239–262. https://doi.org/10.1016/S1161-0301(02)00004-7.

  • Palese, A.M., Pasquale, V., Celano, G., Figliuolo, G., Masi, S., and Xiloyannis, C. (2009). Irrigation of olive groves in Southern Italy with treated municipal wastewater: effects on microbiological quality of soil and fruits. Agriculture, Ecosystems & Environment 129, 43–51. https://doi.org/10.1016/j.agee.2008.07.003.

  • Palese, A.M., Celano, G., and Xiloyannis, C. (2012). Esigenze Minerali e Tecniche di Concimazione – Collana divulgativa dell’Accademia, Vol. X (Spoleto: Accademia Nazionale dell’Olivo e dell’Olio). pp. 1–26.

  • Palese, A.M., Pergola, M., Favia, M., Xiloyannis, C., and Celano, G. (2013). A sustainable model for the management of olive orchards located in semi-arid marginal areas: some remarks and indications for policy makers. Environmental Science and Policy 27, 81–90. https://doi.org/10.1016/j.envsci.2012.11.001.

  • Panzacchi, P., Tonon, G., Ceccon, C., Scandellari, F., Ventura, M., Zibordi, M., and Tagliavini, M. (2012). Belowground carbon allocation and net primary and ecosystem productivities in apple trees (Malus domestica) as affected by soil water availability. Plant Soil 360, 229–241. https://doi.org/10.1007/s11104-012-1235-2.

  • Pretty, J., and Bharucha, Z.P. (2014). Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596. https://doi.org/10.1093/aob/mcu205.

  • Scandellari, F., Liguori, G., Caruso, G., Meggio, F., Inglese, P., Gucci, R., Pitacco, A., Celano, G. and Tagliavini, M. (in press) Carbon sequestration potential of Italian orchards and vineyards, Proceedings of the International ISHS Symposium on physiological principles and their application to fruit production, Geneva, USA. Acta Horticulturae (in press).

  • Scandellari, F., Ventura, M., Gioacchini, P., Vittori Antisari, L., and Tagliavini, M. (2010a). Seasonal pattern of net nitrogen rhizodeposition from peach (Prunus persica (L.) Batsch) trees in soils with different textures. Agric. Ecosyst. Environ. 136, 162–168. https://doi.org/10.1016/j.agee.2009.12.017.

  • Scandellari, F., Ventura, M., Malaguti, D., Ceccon, C., Menarbin, G., and Tagliavini, M. (2010b). Net primary productivity and partitioning of absorbed nutrients in field-grown apple trees. Acta Hortic. 868, 115–122. https://doi.org/10.17660/actahortic.2010.868.11.

  • Smaje, C. (2015). The strong perennial vision: A critical review. Agroecol. Sustain. Food Syst. 39, 471–499. https://doi.org/10.1080/21683565.2015.1007200.

  • Smith, P. (2004). Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236. https://doi.org/10.1016/j.eja.2003.08.002.

  • Sofo, A., Nuzzo, V., Palese, A.M., Xiloyannis, C., Celano, G., Zukowskyj, P., and Dichio, B. (2005). Net CO2 storage in Mediterranean olive and peach orchards. Sci. Hortic. 107, 17–24. https://doi.org/10.1016/j.scienta.2005.06.001.

  • Subke, J.-A., Inglima, I., and Francesca Cotrufo, M. (2006). Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Glob. Change Biol. 12, 921–943. https://doi.org/10.1111/j.1365-2486.2006.01117.x.

  • Tagliavini, M., Tonon, G., Scandellari, F., Quiñones, A., Palmieri, S., Menarbin, G., Gioacchini, P., and Masia, A. (2007). Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 118, 191–200. https://doi.org/10.1016/j.agee.2006.05.018.

  • Ventura, M., Scandellari, F., Bonora, E., and Tagliavini, M. (2009). Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr. Cycl. Agroecosystems 87, 115–125. https://doi.org/10.1007/s10705-009-9317-0.

  • Vogt, K. (1991). Carbon budgets of temperate forest ecosystems. Tree Physiol. 9, 69–86. https://doi.org/10.1093/treephys/9.1-2.69.

  • Zanotelli, D., Montagnani, L., Manca, G., and Tagliavini, M. (2013). Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements. Biogeosciences 10, 3089–3108. https://doi.org/10.5194/bg-10-3089-2013.

  • Zanotelli, D., Montagnani, L., Manca, G., Scandellari, F., and Tagliavini, M. (2015). Net ecosystem carbon balance of an apple orchard. Eur. J. Agron. 63, 97–104. https://doi.org/10.1016/j.eja.2014.12.002.

  • Zhang, Y., Shen, Y., Xu, X., Sun, H., Li, F., and Wang, Q. (2013). Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agric. Water Manag. 128, 140–148. https://doi.org/10.1016/j.agwat.2013.07.007.

Received: 16 October 2015 | Revised: 16 January 2016 | Accepted: 6 March 2016 | Published: 25 April 2016 | Available online: 25 April 2016

previous article     Volume 81 issue 2     next article